Industry News
RL without TD learning
•Berkeley AI Research
In this post, I’ll introduce a reinforcement learning (RL) algorithm based on an “alternative” paradigm: divide and conquer. Unlike traditional methods, this algorithm is not based on temporal difference (TD) learning (which has scalability challenges), and scales well to long-horizon tasks. We can do Reinforcement Learning (RL) based on divide and conquer, instead of temporal difference (TD) learning. Problem setting: off-policy RL Our problem setting is off-policy RL. Let’s briefly revi...
Read full article